245 research outputs found

    End to End Optimization of a Mars Hybrid Transportation Architecture

    Get PDF
    NASAs Mars Study Capability Team (MSCT) is developing a reusable Mars hybrid transportation architecture in which both chemical and solar electric propulsion systems are used in a single vehicle design to send crew and cargo to Mars. This paper presents a new integrated framework that combines Earth departure/arrival, heliocentric trajectory, Mars orbit reorientation, and vehicle sizing into a single environment and solves the entire mission from beginning to end in an effort to find a globally optimized solution for the hybrid architecture

    Integrated Optimization of Mars Hybrid Solar-Electric/Chemical Propulsion Trajectories

    Get PDF
    NASAs Human Exploration and Operation Mission Directorate is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to the Martian sphere of influence. By combining chemical and solar-electric propulsions into a single spacecraft and applying each where it is the most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increase to trip time. Solving the complex problem of low-thrust trajectory optimization coupled with the vehicle sizing requires development of an integrated trajectory analysis frame- work. Previous studies have utilized a more segmented optimization framework due to the limitation of the tools available. A new integrated optimization framework was recently developed to address the deficiencies of the previous methods that enables higher fidelity analysis to be performed and increases the efficiency of large design space explorations

    Potential Advantages of Conducting Short Duration Visits to the Martian Surface

    Get PDF
    Recent NASA concepts for human missions to Mars, including the Evolvable Mars Campaign and Design Reference Architecture 5.0, have focused on the conduct of missions with long duration stays on the Martian surface. The decision to focus on long duration missions (typically to a single site) is driven by a desire to increase the perceived sustainability of the human Mars campaign, predicated on the assumption that sustainability is best achieved by maximizing the level of activity on the surface, providing for continuous growth in operations, and promoting pioneering of Mars. However, executing a series of long duration missions to a single site is not the only option for human exploration of Mars that has been proposed. Other architectures have been evaluated that focus on missions with short duration surface stays, with each mission visiting a separate site on the surface. This type of architecture is less efficient in that elements are not typically reused from one mission to the next but requires a far less complex surface architecture. There are potentially valid arguments to be made that a short duration, multiple site approach could result in different types of advantages when compared to the long duration, single site approach to Mars exploration, particularly for initial human missions to Mars. These arguments revolve around four areas: Achieved Value, Risk Mitigation, Developmental Affordability, and Operational Affordability & Flexibility. The question of Achieved Value relates to the prioritization of goals for Martian exploration. As discussed, goals related to pioneering and expanding human presence are often referenced as justifications for the long duration approach. However, there are other competing goals, including science and exploration. While there is not a clear consensus among planetary scientists, many have argued that the value of being able to visit multiple sites could outweigh the value of continually visiting a single site. Risk Mitigation is a major concern for initial human missions to Mars. There are a number of hazards related to operating on the Martian surface that are not well characterized. It may be desirable to conduct a series of short duration missions to better understand the nature of these risks prior to committing to a long duration mission. Developmental Affordability relates to the ability of NASA and its partners to develop and deploy the proposed architecture. Any human missions to Mars will be among the most complex endeavors ever undertaken. The capabilities that must be developed to enable any human Mars missions are extremely challenging. The total design, development, test, and evaluation (DDT&E) budget required to develop just the essential capabilities alone will be substantial. If additional surface capabilities are required to support long duration surface stays, the development effort could be unaffordable. Operational Affordability & Flexibility relates to the continued costs to execute the Mars campaign. Long duration missions, even with some amount of in-situ resource utilization, require a significant level of resupply for every mission. This requires additional launches and in-space transportation assets, increasing the operational complexity and total operational cost. This paper will explore each of the four potential advantages of short duration missions in detail. The authors will present comparisons between proposed long duration and short duration architectures through an evaluation of relevant performance, cost, and risk metrics

    Asteroid Retrieval Mission Concept - Trailblazing Our Future in Space and Helping to Protect Us from Earth Impactors

    Get PDF
    The Asteroid Retrieval Mission (ARM) is a robotic mission concept with the goal of returning a small (~7 m diameter) near-Earth asteroid (NEA), or part of a large NEA, to a safe, stable orbit in cislunar space using a 50 kW-class solar electric propulsion (SEP) robotic spacecraft (~40 kW available to the electric propulsion system) and currently available technologies. The mass of the asteroidal material returned from this mission is anticipated to be up to 1,000 metric tons, depending on the orbit of the target NEA and the thrust-to-weight and control authority of the SEP spacecraft. Even larger masses could be returned in the future as technological capability and operational experience improve. The use of high-power solar electric propulsion is the key enabling technology for this mission concept, and is beneficial or enabling for a variety of space missions and architectures where high-efficiency, low-thrust transfers are applicable. Many of the ARM operations and technologies could also be applicable to, or help inform, planetary defense efforts. These include the operational approaches and systems associated with the NEA approach, rendezvous, and station-keeping mission phases utilizing a low-thrust, high-power SEP spacecraft, along with interacting with, capturing, maneuvering, and processing the massive amounts of material associated with this mission. Additionally, the processed materials themselves (e.g., high-specific impulse chemical propellants) could potentially be used for planetary defense efforts. Finally, a ubiquitous asteroid retrieval and resource extraction infrastructure could provide the foundation of an on call planetary defense system, where a SEP fleet capable of propelling large masses could deliver payloads to deflect or disrupt a confirmed impactor in an efficient and timely manner

    Mars Hybrid Propulsion System Trajectory Analysis

    Get PDF
    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence

    An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    Get PDF
    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed

    End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Get PDF
    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign

    Cis-Lunar Base Camp

    Get PDF
    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign costs vary by only 15% from 0.36 to 0.51 on a normalized scale across all campaigns. Thus the development and first flight costs of assessed transportation options are similar. However, the cost of those options per flight beyond the initial operational capability varies by 70% from 0.3 to 1.0 on a normalized scale. The 10-year campaigns assessed begin to show the effect of this large range of cost beyond initial operational capability as they vary approximately 25% with values from 0.75 to 1.0 on the normalized campaign scale. Therefore, it is important to understand both the cost of implementation and first use as well as long term utilization. Finally, minimizing long term recurring costs is critical to the affordability of future human space exploration missions. Finally minimizing long term recurring costs is critical to the affordability of future human space exploration missions

    Asteroid Redirect Mission Concept: A Bold Approach for Utilizing Space Resources

    Get PDF
    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavour from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid 2020's using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space

    Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions

    Get PDF
    The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions
    • …
    corecore